Foodborne illness (also called foodborne disease and colloquially referred to as food poisoning) is any illness resulting from eating contaminated food. The most common causes of food poisoning include harmful bacteria and viruses, parasites, food additives and contaminants, etc.
Food Safety
Food can transmit disease from person to person by serving as a growth medium for food contaminations that can cause food poisoning. Food safety refers to non-toxic, harmless of food, in line with the nutritional requirements, and does not cause any acute, subacute or chronic hazards on human health. Currently, food safety is a growing concern all over the world especially in developing areas.
Food Safety Solutions
Food testing and analyzing plays an important role in quality control of food production. Food test kits can make food testing more effective and efficient.
ELISA is a powerful detection method that can qualitatively or quantitatively detect the bacteria, parasites, chemicals, drug residual and other food contaminations. We provides a variety of ELISA kits for the quantitative detection of food contaminants, environmental pollutants, and veterinary drug, etc.
Besides multiple ELISA kits, we offer Rapid test cards which applies the principle of Gold immunochromatography assay (GICA) for qualitative detection of food contaminations.
The elimination of disease-causing microbes from the food supply is a primary, compelling and shared objective of all responsible food processors. An incident of morbidity or mortality associated with a foodborne pathogen can be disastrous for the consumer, the product and the brand linked to the outbreak as well as to the future commercial viability of the processor’s business.
Regulatory source tracking has reached a level of technical sophistication and effectiveness to nearly ensure identification of the item and producer responsible for public health issues. The estimated costs associated with a product recall, the subsequent processing correction and the extended impact on brand value now reach into the tens of millions of dollars. However, these costs do not account for any potential litigation that may arise from the incident. Many companies never recover financially from a foodborne illness outbreak associated with their product.
Historically, pathogen reduction efforts focused on the pre-release screening of finished product. Lots that produced negative test results moved forward into distribution, while those with multiple positive test results were either re-processed or discarded. While this post-process focus reduced the release of contaminated finished product, it did little to prevent processing failure or improve production efficiency.
Today, more effective food safety efforts strive to eliminate pathogens by focusing on the entire processing continuum—from pre-process raw-material screening to Hazard Analysis and Critical Control Point (HACCP)-driven process control and, finally, to limited finished-product screening. If pathogens can be prevented from entering the production process through raw materials, and critical microbial controls are engineered into the process while their effectiveness is regularly monitored, then the finished product will likely be within design specifications. The current food safety focus is on prevention and process control, not post-process failure.
The successful implementation of HACCP plans throughout the food industry, enabling effective process control, has significantly reduced the need for extensive finished product screening and costly release holds. Measurable reduction in the incidence of several foodborne pathogens (e.g., Listeria monocytogenes) has resulted from this shift in focus, as documented by the Centers for Disease Control and Prevention.
Pathogen Testing
A key component in the pathogen elimination process is the pathogen test method. It is a tool applied across the entire production continuum—from the screening of pre-process raw materials to the monitoring and verification of CCP effectiveness and, finally, to the release of a safe finished product. It is used to verify sanitation effectiveness throughout the production environment, including the all-important food-contact surfaces, as well as monitoring the status of in-process material. It provides information that is critical to understanding process control and the success or failure of food safety efforts.
The technologies applied to current pathogen test methods are varied and reflect the evolution of microbial diagnostic science over the past century. Options range from conventional cell culture standards to more recent innovations in immunological, molecular and spectrometric applications. The intent of this article is not to focus upon specific manufacturers’ offerings but to profile the basic technologies used in today’s commercial platforms. An understanding of the available technologies and their comparative benefits, relative to the reader’s needs, may assist in the process of selecting the appropriate test method for the reader’s food safety and pathogen elimination efforts.
The evolution of rapid pathogen-test methods over the past quarter-century has added diagnostic value to food safety and process control efforts, providing more timely access to microbial data and indications of emerging product and process issues. Improved pathogen detection capability has enabled Quality and Operations Management personnel to identify, respond to and correct problems proactively, working to prevent finished product failure. New methods have created more options for processors and have necessitated the development of performance criteria to aid in the method selection process: that is, on what basis does a processor compare a variety of test methods and make an appropriate, knowledge-based selection?
Three such criteria have emerged uniformly across the food industry—speed, accuracy and ease-of-use. The former compares “total time to actionable result” (TTAR), the amount of time that elapses between sample availability and a test result. Accuracy, in brief, can be defined as the new method’s agreement with official test methods or gold standards. These comparisons are generally made on the bases of sensitivity and specificity, inclusivity and exclusivity, limit-of-detection (LOD), false-positive and false-negative rates and other parameters. Finally, ease-of-use relates to the level of technical expertise required to conduct the test method and the extent of materials required (e.g., instruments and consumables). In profiling the four detection technologies currently available—cellular, immunological, molecular and spectrometric—this article will additionally provide comparisons based on the selection criteria cited above.